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In stars and planets natural processes heat convective flows in the bulk of a convective region rather
than at hard boundaries. By characterizing how convective dynamics are determined by the strength
of an internal heating source we can gain insight into the processes driving astrophysical convection.
Internally heated convection has been studied extensively in incompressible fluids, but the effects
of stratification and compressibility have not been examined in detail. In this work, we study
fully compressible convection driven by a spatially uniform heating source in 2D and 3D Cartesian,
hydrodynamic simulations. We use a fixed temperature upper boundary condition which results in
a system that is internally heated in the bulk and cooled at the top. We find that the flow speed,
as measured by the Mach number, and turbulence, as measured by the Reynolds number, can be
independently controlled by separately varying the characteristic temperature gradient from internal
heating and the diffusivities. 2D simulations at a fixed Mach number (flow speed) demonstrate
consistent power at low wavenumber as diffusivities are decreased. We observe convection where the
velocity distribution is skewed towards cold, fast downflows, and that the flow speed is related to
the length scale and entropy gradient of the upper boundary where the downflows are driven. We
additionally find a heat transport scaling law which is consistent with prior incompressible work.

I. INTRODUCTION

Turbulent convective flows are critical to many astrophysical phenomena. In planets and brown dwarfs, convection
drives observable chemical disequilibrium [1–3] and cloud formation [4, 5]. In stars, convection generates differential
rotation [6, 7] and magnetic dynamos [8, 9]. While convection is common, it remains poorly understood, as is
indicated by the solar convective conundrum [10, 11], where reported helioseismic observations of convective flows
differ by orders of magnitude from one another and from theory and simulations [12–15]. This disagreement calls for a
re-examination of the fundamental processes driving solar convection. In order to understand emergent convectively-
driven phenomena in stars and planets, we must develop robust models of the convection driving them.

Astrophysical convection is often driven by internal heating. In stars, convection is caused by changes in opacity
and nuclear fusion, both of which enter the equations of motion as spatially distributed heating processes [e.g., 16].
In gas giant planets, convection is driven by changes in radiative conductivity and the latent heat of formation
[17]. The evolution time of stars is much longer than the dynamical times for convection, and so a non-uniform
conductivity can be treated like a stationary-in-time source of internal heating. Simulations which attempt to model
astrophysical systems include many physical processes, one of which is internal heating [18–23]. While many complex
simulations drive convection with internal heating, these studies usually examine how the heating strength affects
processes including boundary mixing and waves in adjacent stable regions, and there has been less work studying how
heating strength affects the fundamental flow measures in fully compressible, stratified fluids [24–27]. It is important
to understand how the input parameters of internally heated convection map to important measures such as Mach
number number so that we can produce suites of simulations where Mach number is held constant at a known value
for a particular system.

In many experiments and numerical simulations, convection is driven at hot or cold boundaries, and the resulting
boundary layers throttle the heat transport [28, 29]. Some recent simulations and experiments of incompressible fluids
instead drive convection using internal heating in an effort to reduce boundary effects. Numerical simulations from
Goluskin and Spiegel [30] and Goluskin and van der Poel [31] measured heat transport scaling laws in internally heated
Boussinesq convection, and these findings were generalized to find mathematically robust limits to heat transport
scalings in Goluskin [32] and diffusion-based bounds in Wang et al. [33]. Miquel et al. [34] found that internally
heated convection with a non-uniform heat source can, surprisingly, produce heat transport scaling in excess of the
limit set by mixing length theory. Several laboratory experiments have studied internally heated convection using a
dye to absorb light thereby heating the fluid and have found that heat transport scaling depends on the concentration
of the dye and thus the length scale over which the fluid is heated [35, 36]. Earlier internal heating experiments used
electrical currents for bulk heating, and incorporated a cooled upper boundary [37]. The approach of using internal
heating and cooling has also found its way into some studies of astrophysical convection driven through heating and
cooling layers since it produces diffusion free scalings, which are relevant in astrophysical settings where bulk heating
processes drive convective flows without hard boundaries [38, 39].
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In this work we study fully compressible convection which is internally heated in the bulk and cooled at the
top boundary. This is accomplished using a constant and uniform source term of internal energy acting upon an
adiabatically stratified, ideal gas atmosphere. We enforce a fixed temperature upper boundary, giving rise to boundary
cooling at the top of the domain. This setup has been studied in the case of Boussinesq convection in the uniform
heating case of Kazemi et al. [40]. This case is also analogous to the IH3 configuration described in Goluskin [32].
This setup resembles convection near the photosphere of lower main sequence and red giant branch stars, where rapid
photospheric cooling can be approximated as boundary cooling.

We characterize internally heated fully compressible convection, and in particular how quantities like the Mach
number (Ma) and Reynolds number (Re) vary with our chosen input parameters. Mach number may be known for
a particular system, and in this case it is important to have a suite of simulations with this particular Mach number
and different Reynolds numbers. Mach number is measure of how important compressibility is to the dynamics, and
thus when alternative equation sets such as the anelastic or Boussinesq can be used. In this work we determine the
input parameters that allow us to change Mach number and Reynolds number independently.

We demonstrate that changing the magnitude of the heating term affects the Mach number, and thus the importance
of compressibility. With this setup, flow speed as measured by the Mach number, and turbulence as measured by the
Reynolds number, can be controlled independently in 2D simulations and are nearly independent in 3D. We observe
convective flows dominated by cool downflows produced at the upper boundary layer. At fixed heating magnitude,
we find that heat transport and the Reynolds number follow expected scaling laws from Boussinesq convection. With
independent control of Mach number and Reynolds number we can produce a series of simulations with consistent
behavior in convective power spectra at low wavenumber.

II. METHODS

We study the evolution of an ideal gas according to the fully compressible Navier-Stokes equations. We follow
previous works [e.g., 41, 42] and use a temperature and log-density formulation of the equations. We modify the
equations by adding a heating term, Q, to the internal energy equation. These fully compressible equations are:

∂ ln ρ

∂t
+ u · ∇ ln ρ+∇ · u = 0, (1)

∂u

∂t
+ u · ∇u = −R

m
[∇T + T∇ ln ρ] + g +

µ

ρ
∇ · σ, (2)

∂T

∂t
+ u · ∇T + (γ − 1)T∇ · u =

1

ρcv
µΦ+

κ

ρcv
∇2T +

1

ρcv
Q, (3)

where ρ is the density, u = ux̂ + vŷ + wẑ is the velocity vector, T is temperature, µ is the dynamic viscosity, κ is
the thermal diffusion, and Q is an internal heating source term. We take µ, κ, and Q to be constant in time and
spatially uniform, which is assumed in the expressions of equations 2-3. We use an ideal gas equation of state for
pressure P = R

mρT , where R is the gas constant and m is the mean molecular weight. cV and cP are the specific heat
at constant volume and pressure respectively, and their ratio is the adiabatic exponent γ = cP

cV
. The viscous stress

tensor σ and viscous heating term Φ are respectively defined as

σij = 2

[
Eij −

1

3
(∇ · u)Iij

]
, (4)

Φ = 2

(
EijEij −

1

3
(∇ · u)2

)
, (5)

where Iij is the identity tensor and

Eij =
1

2

[
∇u+ (∇u)T

]
(6)

is the rate-of-strain tensor. We decompose our thermodynamics into an adiabatic and hydrostatically equilibrated
portion (which we denote with subscripts 0) and fluctuations around that background (which we denote with subscripts
1). We decompose our fully non-linear thermodynamics about that background state, ln ρ = ln ρ0 + ln ρ1 and T =
T0 + T1. The temperature gradient of the hydrostatic background is set to the adiabatic temperature gradient,
∇T0 = ∇Tad = g/cP where g = −gẑ is the gravitational acceleration vector which is taken to be constant and
uniform. The domain spans z ∈ [0, Lz] and is a horizontally periodic box with aspect ratio Γ = Lx/Lz = 4. For 3D
simulations we set Lx = Ly. At the top and bottom boundary we enforce no-slip boundary conditions,

u(z = 0) = u(z = Lz) = 0. (7)
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FIG. 1. (Left panel) Symbols indicate the simulations conducted in this work in H - Ra/Racrit parameter space. 2D simulations
are indicated with a solid circle. 3D simulations are indicated with the square outline, ×, and + symbols. The marker color
indicates the value of Ra and H for each point. The left side of each 2D point indicates the value of Ra (upper color bar) and the
right side indicates the value of H (right color bar). 3D points are colored by the value of Ra. While these colors are redundant
with the position on the plot, these colors are used consistently throughout the rest of the figures to refer to Ra/Racrit and
H. (Right panel) Initial conditions for T and ρ where dashed lines correspond to an adiabatic polytrope stratification and
solid lines show the “Fast-IC” initial conditions, where we approximate the temperature structure of the final state and solve
a boundary value problem for the density profile which satisfies hydrostatic equilibrium and mass conservation, see Appendix
B. The “Fast-IC” profile shown is for Ra/Racrit = 2× 105 and H = 10.667.

with mixed thermal boundary conditions, where we fix the temperature gradient at the bottom and fix the temperature
at the top of the domain,

∂T1

∂z
(z = 0) = T1(z = Lz) = 0. (8)

We nondimensionalize our equations using values of ρ and T taken at top of the domain to specify our reference
temperature, Tc, and density ρc such that T0(z = Lz) = 1 and ln ρ0(z = Lz) = 0. We choose a nondimensional time
scale by setting the ideal gas constant R/m = 1. This choice ensures that the isothermal sound speed, c2s = ∂P/∂ρ =
R/mT = 1 when evaluated at the top of the domain. We choose our characteristic length scale to be Lc = Tc/∇Tad.
We specify the depth of our domain so that the adiabatic reference state spans Nρ = 3 density scale heights according
to the formula:

Lz = e(γ−1)Nρ − 1. (9)

We set the ratio of viscous to thermal diffusivities with the Prandtl number Pr = µcP /κ = 1.
To control the simulations we specify the strength of the source term in the energy equation with a nondimensional

heating strength parameter, H, such that

Q =
κ

Lz
H, (10)

where H is constant. H measures a characteristic temperature gradient scale from the heat source, H = ∇T1(z =
Lz)/∇Tad. Since we are considering a constant and uniform heat source, the flux in excess of that carried by the
adiabat linearly increases with height and the slope of the flux is determined by H.
By separating Q into a part proportional to κ and a part proportional to H we ensure that the hydrostatic thermal

equilibrium

∇2T = − H
Lz

(11)
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remains constant as we change the degree of turbulence via changes to the diffusivities. By integration we can produce
a constant temperature scale for this static solution

∆Tstatic = 2
L2
zQ

κ
= 2LzH. (12)

The quantity ∆Tstatic is analagous to the quantity ∆ in equation 1.5 of Goluskin [32]. Using H as an input parameter
removes the scaling factor of kappa from the heating function, which ensures that the Rayleigh number only depends
on diffusivities when H is fixed.
We specify a Rayleigh number at the top of the domain to control the degree of turbulence in a simulation. The

Rayleigh number, Ra, takes the form

Ra =
gL3

zρ
2
ccP (∆Tstatic/2Tc)

µκ
=

gL4
zρ

2
ccP

µκ

(H
Tc

)
. (13)

H is a fundamental input parameter, and the Ra here is directly comparable to the one used to study Boussinesq,
internally heated convection in Goluskin and Spiegel [30], Goluskin [32], and Kazemi et al. [40]. We perform a linear
stability analysis using eigentools [43] to determine the value of Racrit; see appendix A for details on how we perform
this analysis. We find that the critical Ra is near constant at Racrit ≈ 50 for values of H < 1. At higher values of H
the critical Rayleigh number increases with H.
There are 8 nondimensional numbers which control this experiment, Rayleigh number, H, Prandtl number, γ,

Nρ, 2 aspect ratios (for x and y), and ∇T (z = 0)/∇Tad which we have set to 1 implicitly with our setup. We
derive the number of nondimensional parameters in a similar manner to Graham [44], however we have two additional
nondimesional parameters from the addition of a 3rd dimension and our internal heat source. The non-dimensionalized
equations are

∂ ln ρ′

∂t
+ u′ · ∇ ln ρ′ +∇ · u′ = 0, (14)

∂u′

∂t
+ u′ · ∇u′ = − [∇T ′ + T ′∇ ln ρ′]− γ

γ − 1
ẑ + L2

z

√
HPr

Ra

1

ρ′
∇ · σ′, (15)

∂T ′

∂t
+ u′ · ∇T ′ + (γ − 1)T ′∇ · u′ = (γ − 1)L2

z

√
HPr

Ra

1

ρ′
Φ′ + γL2

z

√
H

RaPr

1

ρ′

[
∇2T ′ +

H
Lz

]
. (16)

For our numerical experiment we vary Ra and H and hold all other nondimensional inputs constant. With this
choice of input parameters, varying Ra at constant H changes the value of κ and µ, while changing H at constant
Ra changes the magnitude of the source term while also changing κ and µ to ensure that the ratio of the buoyancy
timescale to the diffusive timescale remains constant. By using Ra and H as our fundamental input parameters, we
are able to largely separate the posterior Reynolds and Mach number of our simulations. We run 2D simulations
across 9 values of H and 6 values of Ra/Racrit. These 53 simulations are shown in parameter space in the upper left
panel of Fig. 1. We run select 3D simulations to validate the behavior of the 2D simulations; these simulations are
denoted as boxes, ×, and + to indicate different values of H.
We decompose equations 14 - 16 into linear and non-linear terms using the adiabatic background state and then use

an implicit-explicit timestepper to implicitly timestep the linear terms and explicitly timestep the nonlinear terms.
Our timestep is therefore determined by the CFL constraint of the nonlinear advective term rather than the linear
sound waves or diffusion terms, enabling us to simulate low Mach flows efficiently. We timestep the decomposed
version of equations 14-16 with the Dedalus v2 1 pseudospectral solver [45] at resolutions up to 2048× 1024 spectral
coefficients for 2D simulations and up to 512× 512× 256 for 3D simulations. We use an implicit-explicit, four-stage,
third-order Runge-Kutta RK443 timestepper [46] with a CFL safety factor of 0.75 for 2D simulations and the two-step
semi-implicit backwards differentiation SBDF2 timestepper [47] with a CFL safety factor of 0.3 for 3D simulations.
All fields are represented as spectral expansions of Nz Chebyshev coefficients in the vertical (z) basis, and Nx, Ny

Fourier coefficients in the horizontal (x and y) bases thus making our domain horizontally periodic. To avoid aliasing
errors, we use the 3/2-dealiasing rule in all directions. We initialize the simulations with random noise temperature
perturbations with magnitude 10−3Q1/3 sin(πz/Lz) added to the initial temperature profile. We define a heating
timescale from mixing length theory th = Q−1/3 to set the output cadence for the simulations. The code used in this
paper can be found at https://github.com/whitney-powers/internally_heated_fc_convection.

1 Commit with short-SHA 1339061

https://github.com/whitney-powers/internally_heated_fc_convection
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Simulations whose initial temperature profiles are the adiabatic state T0 experience a long thermal relaxation time
while a superadiabatic thermal boundary layer develops at the upper boundary. To reduce the time spent bringing
simulations into thermal equilibrium, we construct an initial stratification characterized by a temperature profile
which is adiabatic in the bulk but has a superadiabatic upper boundary layer. We will refer to these initial conditions
as “fast-IC”. The width of the boundary layer is predicted from a Nusselt number scaling law extrapolated from low-
Ra, low resolution simulations which used an adiabatic polytrope for their initial stratification. We solve a nonlinear
boundary value problem to find the density stratification for a specified temperature profile which satisfies hydrostatic
equilibrium while containing the same total mass as the adiabatic initial conditions. Example stratifications for
adiabatic and fast initial conditions are shown in the right panel of Fig. 1.

The “Fast-IC” approach offers significant improvement in the run time of 2D simulations. We discuss the con-
vergence and performance properties of “Fast-IC” in more detail in section III C. We use fast-IC for 2D cases with
Ra/Racrit > 2 × 105 and for all 3D cases except the H = 10.667. We calibrated the fast-IC by measuring and ex-
trapolating a Nu (Nusselt number) vs Ra power law (Eqn. 28)from 2D simulations with Ra/Racrit ≤ 2 × 105. For
each value of H we fit a scaling law for Nu of form Nu = A ∗ Raα, where α ≈ 1/5 and the prefactor A ≈ 1. The
exact values of A and α are listed in Appendix B. This extrapolation works well for 2D, but for 3D runs the 2D
calibration produces initial conditions with too large of a thermal boundary layer implying a subtly different Nu vs.
Ra law in 2D and 3D. This discrepancy is especially pronounced at high H where these initial conditions produce a
highly unstable region which leads to non-physical negative temperature perturbations which cause a timestepping
instability. For the 3D, Ra = 2 × 104Racrit, H = 10.667 case we reverted to the standard adiabatic polytrope for
the initial conditions. Nu vs. Ra in the fast-IC approach should be properly calibrated from 3D results to improve
performance. For the details of generating “fast-IC” initial conditions see Appendix B.

III. RESULTS

A. Dynamics

In Fig. 2 we visualize the entropy fluctuations about the adiabatic entropy in four 2D and two 3D simulations. Since
entropy in the interior is constant (see Fig. 4) we estimate this adiabatic entropy by taking a time averaged value at
the mid z-plane. We observe a cold (blue) upper boundary layer where heat is transported by conduction. In both 2D
and 3D systems the dynamics are dominated by convective downflow lanes in blue while convective upflows in red are
weaker in magnitude. We use an asymmetric colorbar so that features can be resolved, but note that features in red
are at much lower magnitude than features in blue. We do not observe heated upflow plumes at the lower boundary,
and the boundary itself is not heated as the superadiabatic flux is zero. Flows at the upper boundary appear similar
to standard boundary driven flows with cold plumes launching from a cooled layer. The behavior of the hot and
cold plumes is indicative of the internal heating. Downflows cool at the upper boundary and as they fall they are
heated, becoming buoyantly neutral (white), and hot upflows gradually heat as they rise, becoming a more intense
red. We observe flow morphologies which are similarly dominated by cold downflows in 2D and 3D simulations. Our
high Rayleigh number 2D simulations have characteristic features of 2D turbulence, such as vortices in the hot upflow
plumes and the formation of large flywheel structures, albeit these flywheels are weaker than is typically observed in
boundary driven convection [42]. We observe multiple downflow plumes in highly turbulent states in contrast to the
single plume flywheel structure previously observed in boundary driven convection.

In Fig. 2 a-c, we show how dynamics change with increasing supercriticality in 2D simulations at low H. The
simulation in Fig. 2 a is laminar. As the Rayleigh number increases in Fig. 2 b and c we see more complex turbulent
dynamics emerge. These include long-lived wrapped vortices, where hot fluid is encircled by cold fluid indicating high
Péclet number flows.

In Fig. 2 d we show turbulent 2D dynamics with a higher value of H = 16.5. The dynamics appear similarly
turbulent between Fig. 2 c and d; both have wrapped vorticies and similar levels of small scale detail. This indicates
that H has little effect on the Reynolds number of 2D flows. Where these two simulations differ is in the magnitude of
fluctuations. The fluctuations in panel d are an order of magnitude larger than in panel c as indicated by the colorbar
limits (see the ± values left of “2D”). So varying Ra and H control mostly independent properties of the dynamics.

In the right column we show the effect of increasing Rayleigh number in 3D. The simulation in Fig. 2 e shares the
same values of Ra and H as Fig. 2 a, and Fig. 2 f shares the same values as Fig. 2 b. As 3D flows become more
turbulent we see more convection cells at the upper boundary and a transition from coherent cell structure at the
midplane to flows dominated by discrete downflow plumes distributed randomly across the midplane. The behavior
of the cool downflows in Fig. 2 f are consistent with weak upflows, as indenpendent downflow plumes are not pushed
into coherent downflow lanes.
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FIG. 2. We show entropy fluctuations with the adiabatic entropy subtracted. For each panel we set the colorbar limits at
the 3rd and 97th percentile values of entropy from that simulation. These minimum and maximum values are displayed above
each panel. Note the substantial imbalance between the extent of the minimum and maximum values. We show 2D dynamics
in the left column, and 3D dynamics in the right column. In panels a), b), and c) we show 2D dynamics at H = 0.75 and with
Ra/Racrit = 2 × 103, 2 × 105, and 2 × 107, respectively. As Rayleigh number increases, the flows become more turbulent. In
panel d) we show a simulation with the same Rayleigh number as panel c), but with stronger internal heating at H = 16.5.
In panel e) we display the 3D simulation with the same parameters as panel a). and in panel f) we display the 3D simulation
with the same parameters as panel b). An animation of this figure can be found at https://vimeo.com/793788958

The asymmetry between upflows and downflows can be observed more quantitatively through probability distribu-
tion functions (PDFs) of the entropy fluctuations and vertical velocity as shown in Fig. 3. We plot PDFs of a 2D
(green line) and 3D (orange line) simulation at Ra/Racrit = 2× 105 and H = 0.75 which correlates to panels b and f
of Fig. 2. The PDF of entropy fluctuations about the adiabatic value(left panel) are nearly identical in the 2D and
3D case. The peak of the entropy distribution is found near zero (dashed grey line), which is the adiabatic entropy.
The distribution is skewed to the left, which indicates that the entropy fluctuation of the cold downflows are larger
in magnitude on average than the hot upflows. In contrast the PDFs of vertical velocity differ substantially between
2D and 3D. The asymmetry between upflows and downflows is visible in the vertical velocity distribution, where the
upflows on the right side of the dashed grey line (zero velocity) are closer on average to zero than the downflows on
the left hand side. The 2D and 3D cases have distinct velocity distributions. The 3D case is a narrower distribution
overall with a kurtosis of 7.52 as compared to 4.54 for the 2D case, indicating that the velocities are smaller overall,
and the skew towards negative velocity is more pronounced, with skewness of -1.74 as compared to -0.60 for the 2D
case. This likely is related to the unique dynamics created with flows restricted to a plane such as the formation of

https://vimeo.com/793788958
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FIG. 3. Time-averaged probability distribution functions (PDFs) of entropy fluctuations with the adiabatic entropy subtracted
(left panel) and vertical velocity (right panel) are shown for 2D (green line) and 3D (orange line) simulations. Both simulations
use Ra/Racrit = 2×105 and H = 0.75. The PDFs are averaged over 12 heating timescales. The entropy PDF is skewed towards
negative values and is nearly identical between the 2D and 3D case. In contrast, the velocity PDFs exhibit different behavior
in 2D and 3D. The 3D case has a narrower velocity distribution with more pronounced skew towards downward flows.

long-lived flywheel structures in 2D, but not in 3D.

B. Structure

The downflow-dominated dynamics can be explained by horizontally averaged profiles of the energy fluxes and the
entropy gradient, which are shown in Fig. 4. In the left panel, we show the vertical component of the horizontally
and time averaged fluxes. We denote a horizontally averaged quantity with a bar, ie a = 1

LxLy

∫
a dx dy where Ly

and ∂y are dropped for 2D simulations. To derive the fluxes for this system, we first define a total energy equation
by summing ρu dotted into Eqn. 2 and ρcV multiplied into 3. After invoking Eqn. 1 and some manipulation we find

∂

∂t

(
1

2
ρ|u|2 + ρ(−gz) + cV ρT

)
+∇ ·

[
ρu

(
1

2
|u|2

)
+ ρu(−gz)− µ(u · σ) + ρu(cPT )− κ∇T

]
= Q. (17)

This equation is in conservation form with the sum of the kinetic energy, potential energy, and internal energies in
the time derivative, the sum of the fluxes in the divergence term, and our source term Q on the right hand side. We
define the conductive, convective, and total fluxes as

Fcond = −κ∇T (conductive flux) (18)

Fconv = Fenth + FKE + FPE + Fvisc (convective flux) (19)

Ftotal = Fcond + Fconv (total flux). (20)

The components of the convective flux are the enthalpy flux, kinetic energy flux, and potential energy flux:

Fenth = ρu(cPT ) (enthalpy flux) (21)

FKE = ρu(|u|2/2) (kinetic energy flux) (22)

FPE = ρu(−gz) (potential energy flux) (23)

Fvisc = −µ(u · σ) (viscous flux). (24)

We further define the adiabatic flux, which is the flux conducted along the adiabatic temperature gradient, and the
flux imposed by our heat source which is defined such that our fixed flux lower boundary is satisfied as

Fad = −κ∇Tad = −κg/cP (adiabatic flux) (25)

Fimposed = Qz + Fad (imposed flux). (26)
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FIG. 4. (Left panel) Time- and horizontally-averaged vertical energy flux profiles for the 3D simulation with Ra/Racrit = 2×104

and H = 10.667 plotted against height. The imposed flux from the source term is shown with the solid black line and the
adiabatic flux (defined in equation 25) with the dashed black line. The time-averaged total flux Ftotal is shown with the orange
line which converges to imposed heat flux Fimposed. The green line shows the conductive flux Fcond which is adiabatic at the
lower boundary and interior. The conductive flux becomes large in the superadiabatic upper boundary layer. We show the
convective flux Fconv with the purple line. We also display the kinetic energy flux, a component of the convective flux, with
a dashed pink line. Due to the asymmetry introduced by stratification the KE flux is negative. In the right panel we show
the entropy gradient. The entropy gradient is zero everywhere except the superadiabatic upper boundary. The integral of the
entropy gradient, denoted by the shaded grey region, is the change in entropy, ∆s, which is important in predicting the Mach
number of the flows as we discuss in section IIID.

Our systems are in thermal equilibrium, denoted by the fact that on average the total flux through the system matches
Fimposed. In the interior, conduction transports a flux equivalent to the adiabatic flux, and convection efficiently
transports the remainder of the flux. The kinetic energy flux (dashed pink line) is small and directed downward, thus
the enthalpy flux is large and positive. In the upper boundary layer convective motions come to a stop to satisfy the
impenetrable boundary conditions and the dominant form of heat transport transitions to conduction giving rise to
a superadiabatic upper boundary layer (blue layer visible in Fig. 2 at top boundary).

These same features are seen in the right panel of Fig. 4 where we plot the specific entropy gradient ∇s, where

s = (γ − 1) lnT − ln ρ. (27)

The entropy gradient follows the adiabatic value in the bulk but becomes strongly superadiabatic near the upper
boundary. Strong downflow plumes launch from this superadiabatic boundary layer. Note the lack of a lower boundary
layer, which is consistent with the absence of strong upflow plumes in Fig. 2. The size of the upper boundary layer
can be measured by the integral of the entropy gradient, ∆s =

∫
∂s∂z = s(z = Lz)− s(z = 0), which scales with both

H (which varies the magnitude of the boundary layer), and Ra (which varies the width of the boundary layer). We
will discuss the scaling of ∆s with our control parameters as well as its impact on the Mach number in section IIID.

C. Scalings

We calculate time and volume averaged Mach number, Reynolds number, and Nusselt numbers, which we respec-
tively define as

Ma =

〈√
|u|2
cs

〉
, Re =

〈√
|u|2Lc

ν

〉
, Nu = 1 +

〈
Fconv

⟨Fcond − Fad⟩

〉
=

〈
FQ

⟨Fcond − Fad⟩

〉
. (28)
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FIG. 5. Time evolution of Reynolds number (left panel) and Nusselt number (right panel). We display time traces for three
2D simulations at H = 0.75 at Ra/Racrit = 1.9 × 103, 1.9 × 105 and 1.9 × 107. The Ra/Racrit = 1.9 × 107 simulation uses
fast-IC, and the Ra/Racrit = 1.9× 103 simulation uses an adiabatic polytrope for its initial condition. We show both adiabatic
(orange line) and fast initial conditions (brown line) for the simulation at Ra/Racrit = 1.9× 105 in the Reynolds number plot.
The simulations using fast-IC reach a thermally converged state quickly. At high Ra, the instantaneous value of Nu becomes
chaotic, so we also plot the rolling time average over 40 heating timescales which is denoted by the darker colored trace.

Here, ⟨a⟩ = 1
LxLyLz

∫
a dx dy dz represents a volume-average (where we drop Ly and ∂y for 2D simulations), and we

only use the vertical components of the fluxes (defined in equations 18 - 26) to calculate Nu. Our Nusselt number
takes the same form as the compressible Nusselt number used in Graham [44], Hurlburt et al. [48] and Anders and
Brown [42]. This Nusselt number is the ratio of the total flux in excess of the adiabatic flux divided by the conductive
component of the flux in excess of the adiabat. As we approach the Boussinesq limit, Fad approaches zero, and we
recover the standard Boussinesq Nusselt number.

The time evolution of Re and Nu are displayed in Fig. 5. We show time traces from three 2D simulations at
H = 0.75 with different values of Rayleigh number. The highest Rayleigh number run (purple line) uses Fast-IC,
and it reaches a thermally equilibriated solution at approximately t = 1000 whereas the lower Rayleigh number run
at Ra/Racrit = 2× 105 (orange line) takes until approximately t = 2500 despite having a shorter diffusive timescale.
These simulations converge to a statistically similar state. We find that the simulation shown in orange in Fig. 5
reaches Re = 582 with the standard initial conditions and Re = 589 with “Fast-IC”. The standard deviation of
the fluctuations in Re are σ = 14, so these two simulations reach values of Re that are well within one standard
deviation. While fluctuations of Re are relatively small compared to the mean, the fluctuations of Nu are large
and grow significantly with Rayleigh number, indicating that nonlinearity becomes more important. In this highly
nonlinear state, such as the orange and purple trace in Fig. 5, minima in the Nusselt number are caused when cold
fluid is swept upwards and hot fluid is swept downwards. Because of the high Peclet number (Pe ≈ 5 × 103), these
hot and cold fluid parcels retain their thermal signature for several domain crossings, as is seen in Refs. [49–51].

In the upper left panel of Fig. 6, we show the scaling of average Ma against H. We find a scaling that is roughly
consistent with a H1/2 power law at H ≲ 1 and a weaker scaling at large H. This transition at H ∼ 1 is where
∇T1(z = Lz) ∼ ∇Tad The scaling deviates from the H1/2 power law more rapidly at lower Ra. While we do not
have results from higher values of H, and so we cannot be conclusive, it appears that in the high H, higher Mach
number limit, Mach number may become constant as H increases. In the upper right panel, we plot Re vs. H. Re is
independent of H when H ≲ 6. Re increases with H as we transition to higher Mach number flows at H ≳ 6. While

we start to see some scaling of Re with H, the Reynolds number still scales like Ra1/2 in this regime. In the lower
left panel we show the scaling of average Ma against supercriticality. We see that our 2D simulations have a roughly
constant Mach number for a fixed value of H, however Mach number decreases with Ra for our 3D simulations. In
the lower right panel we plot average Reynolds number against supercriticality. Our simulations roughly match a

Re ∝ Ra1/2 power law which is the expected behavior. Re scales weakly with H, so we achieve more turbulent flows
at fixed supercriticality.

We perform a least-squares fit for Re and Ma for 2D simulations with H < 6. We exclude values at higher H due
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FIG. 6. (Upper left panel) The scaling of average Mach number against H, where color represents Ra/Racrit. Dots represent

2D simulations and the ×, box and + symbols represent 3D simulations. We display a H1/2 power law with a dashed black line
which approximates the scaling observed in the data. (Upper right panel) The scaling of average Reynolds number against H,
where color represents Ra/Racrit. (Bottom left panel) The scaling of Mach number with Rayleigh number where color denotes
H. Note that in 3D there is a downward trend in Mach number with increasing Rayleigh number. The power laws found by
Ref. [42] (AB17) are shown by grey lines, with the solid line showing the 2D power law from AB17 and the dashed line showing
the 3D power law. (Lower right panel) the scaling of average Reynolds number against supercriticality where color denotes H.

We show a Ra1/2 power law with a dashed black line.

to the lack of clean power law behavior in Ma as can be seen in Fig. 6 (e.g., top left panel). We find

Ma2D ∝
(

Ra

Racrit

)−0.02

H0.44. (29)

The Reynolds number scales as

Re2D ∝
(

Ra

Racrit

)0.45

H0.01, (30)

Importantly for 2D simulations, we find little Re dependence on H, and little Ma dependance on Ra. This validates
our experimental design. We performed a least squares fit for the scaling or Re and Ma against Ra for the suite of 3D
simulation with constant H = 0.75. We find that while the 2D simulations produce roughly constant Ma for a given
value of H, Ma decreases with Ra in 3D as Ma ∝ Ra−0.10. Additionally we find that the 3D simulations achieve a
weaker Re scaling of Re ∝ Ra0.38 than our 2D simulations.
The Nusselt number is a measure of how efficiently convection transports heat. It is expected that the Nusselt

number in astrophysical convection follows a diffusion-free power-law scaling which is referred to as the “ultimate
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regime” [52]. We measure a Nusselt number scaling law using our input Rayleigh number, and given this choice we

expect the “ultimate regime” to be a Nu ∝ Ra1/3 power law. We measure the scaling of the Nusselt number with
Ra/Racrit and show these results in Fig. 7. We find Nu ∝ (Ra/Racrit)

0.21 for 2D and Nu ∝ (Ra/Racrit)
0.20 for 3D,

both are very close to a 1/5 power law. As we transition to a higher Mach number regime at the upper range of H we
find that the Nusselt number increases with H and that a 1/5 power law does not fit our data as effectively at high
H where we observe a steeper trend at high Ra. This suggests that compressible effects modify the boundary layer
formation and scaling for high Mach number convection.

D. Effect of Upper Boundary Layer

To study the origin of our observed scaling of Mach number with H we measure the change in specific entropy, s,
across the domain. Since the entropy profile is adiabatic everywhere except the upper boundary, this domain-average
measures the properties of the upper boundary layer. ∆s is a function of both H and Ra, where increasing H increases
the magnitude the boundary layer, and increasing Ra decreases its width. In the low-Mach number regime where the
anelastic approximation is valid, a balance between buoyancy and nonlinear inertia takes the form [53]

u · ∇u ∼ − g

cp
s ⇒ u ∼

√
ℓ
g

cp
s, (31)

where ℓ is a dominant flow length scale. This suggests that we should find Ma ∼ (∆s)1/2.
In Fig. 8 we plot the behavior of ∆s against our control parameters Ra (left panel) and H (middle panel). Increasing

Rayleigh number causes the superadiabatic upper boundary to be thinner, causing a negative scaling, while increasing
H causes the amplitude of the superadiabatic boundary to increase, casuing a positive scaling. The scaling of ∆s is
similar for both 2D simulations (circles) and 3D simulations (squares, ×, and + symbols). 3D simulations have slightly
smaller boundary layers and thus smaller values ∆s, but the scaling exponent remains the same. This indicates that
the size of the boundary layer scales in a consistent manner for both 2D and 3D simulations.

In the right panel of Fig. 8 we plot Ma against ∆s. We find that our simulations are broadly consistent with a
Ma ∝ (∆s)1/2 power law (dashed black line) suggesting that this is the dominant nonlinear trend driving our dynamics.
Our 3D simulations are well described by a (∆s)1/2 power law, but the 2D simulations have more deviation from
the trend line indicating the presence of a second order effect from our control parameters on the Mach number of
the flows. To better show this effect we plot only the simulations with H = 0.75 in the inlay. We see that the
3D simulations all fall on the (∆s)1/2 trend line, however the 2D simulations depart from this trend line where we
find that higher Ra simulations produce higher Ma flows than predicted from the anelastic theory. This discrepancy
between 2D and 3D simulations cannot be explained by the size of the boundary layer. Instead the way in which
the dynamics respond to the boundary layer changes between the 2D and 3D case. Since all the 3D simulations fall
on a single trend line, it should be possible to design 3D simulations that reach constant Ma against variations in
supercriticality as long as the change in entropy is held constant.

E. Power Spectra

We calculate the convective power spectra at the mid-z plane of our 2D simulations at H = 0.75. To do so, We
output the interpolated velocity at z = Lz/2, and compute the discrete Fourier transform. We define the Fourier
transform of the velocity as

U(kx) =

Nx−1∑
n=0

u(xn)e
− i2π

Nx
kxn (32)

We define the power spectral density as the product of the Fourier transform of velocity and its complex conjugate
normalized by the horizontal resolution squared, P(kx) = (1/N2

x)U(kx)
∗ · U(kx), where ∗ denotes the complex

conjugate and Nx is the horizontal resolution.
For 3D simulations we perform a 2D Fourier transform of the velocity at z = Lz/2 for simulations at H = 0.75. We

define the 2D discrete Fourier transform as

U(kx, ky) =

Nx−1∑
n=0

Ny−1∑
m=0

u(xn, ym)e
−i2π

(
kxn
Nx

+
kym

Ny

)
(33)
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FIG. 8. In the left panel we display a scatter plot of ∆s against Ra/Racrit. Colors correspond to values of H, and squares, x,
and + symbols correspond to 3D runs. Circles denote 2D runs, with large circles indicating a 2D run with a corresponding 3D
run at the same control parameters. In the middle panel we show a scatter plot of ∆s against H, with the same marker styling
as in the left panel, but with colors now corresponding to Rayleigh number. In these two panels we show that the scaling of
∆s with our control parameters is consistent between 2D and 3D simulations and the small differences that are seen are not
from a change in the power law exponent. In the right panel we show how Mach number scales with ∆s. We find a scaling
consistent with Ma ∝ (∆s)1/2 for 3D simulations and for 2D simulations at a fixed value of Ra. However, when we increase
Ra in 2D simulations ∆s decreases. We show an inlay plot with just the simulations with H = 0.75. We see that for 3D, all
simulations fall on the Ma ∝ (∆s)1/2 trend line, but the 2D simulations do not, with increased Ra leading to smaller ∆S and
slightly decreased Ma.

We define the power spectral density as P(kx, ky) = (1/(N2
xN

2
y ))U(kx, ky)

∗ ·U(kx, ky) and then transform the power

spectra density from kx and ky space to kθ and kh space where kh =
√

k2x + k2y is the horizontal wavenumber and

kθ = arctan(ky/kx) we then interpolate and average over kθ to produce a horizontal wavenumber power spectral
density P(kh).

For 2D simulations at low wavenumber we find that the power spectrum magnitude changes little as Ra is increased.
We expect this behavior in 2D since Mach number and Reynolds number are independent of each other under our choice
of parameterization. The spectra decay with roughly a k−3 power law, which is associated with a two dimensional
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FIG. 9. (left panel) Convective power spectra of 2D simulations accumulated over 40 heating timescales. We plot the power
spectra of the mid-z plane velocity vector for a set of simulations with constant H. We find consistent power at low wavenumber
for these simulations. The less turbulent simulations enter the viscous regime at lower kx than the more turbulent simulations.
We plot canonical k−5/3 and k−3 power laws, and note that the k−3 power law better matches the energy cascade in our
simulations. The sharp vertical cutoff of the spectra is found at the highest possible wavenumber given the simulation’s
resolution. (right panel) Convective power spectra of 3D simulations accumulated over 2 heating timescales. We plot power
spectra of the mid-z plane velocity vector for a suite of simulations at constant H. The low wavenumber power decreases with
increasing Ra.

turbulent cascade of vorticity from low to high wavenumber [54, 55]. The characteristic scale of our internal heat
source is the size of the domain, so it makes sense that we find the k−3 forward vorticity cascade as we are driving
convection over a large length scale. At high kx we see the viscous cutoff wavenumber increase with Ra, but the nature
of the spectra at lower kx remains unchanged. This suggests that it may be possible to extrapolate the large-scale
dynamics present in our simulations to higher Rayleigh number cases. However, the large scales of our 2D simulations
are dominated by flywheel structures, which are not found in astrophysical convection, limiting the utility of this
behavior.

We find that the spectra of our 3D simulations does not have the same consistent behavior as seen in 2D. As Rayleigh
number increases, the magnitude of the low wavenumber modes decreases. We expect this behavior from the 3D Mach
number scaling since the magnitude of the power spectrum depends on the Mach number. This unfortunately means
that less turbulent simulations cannot be easily used to predict low wavenumber flows in a more turbulent system.

F. Comparison to Other Work

It is useful to compare our results to simulations of fully compressible boundary driven convection, as well as
incompressible internally heated convection. The former allows us to interpret the effect of different thermal driving
models, while the latter allows us to study how compressibility affects simulations with otherwise similar thermal
driving. Our dynamics are distinct from the characteristic behaviour of boundary driven convection. We observe
dynamics with strong downflows and weak, diffuse upflows. In our 3D simulations downflows form individual plumes
and are not pushed into downflow lane structures. This is counter to what is seen in a boundary driven system [e.g.,
42] The downflow dominated dynamics we observe are reminiscent of the convective dynamics observed by Käpylä
et al. [56], who studied a depth-dependent internal heating, despite the fact that we study a constant heat source.
We measure scalings of Reynolds number, Mach number, and Nusselt number. Our Reynolds number scalings of

Re ∝ Ra0.45 for 2D and Re ∝ Ra0.38 for 3D are similar to those in Anders and Brown [42] (AB17) who found a
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Re ∝ Ra3/4 power law for 2D low Mach simulations and a Re ∝ Ra1/2 power law for 3D simulations and Ma ∼ 1
2D simulations. However our scaling exponent in 3D is smaller. This similarity is unsurprising since our Rayleigh
number scales viscosity and diffusivity in the same basic manner. Our Mach number scaling of Ma ∝ Ra−0.02 for
2D and Ma ∝ Ra−0.10 for 3D however is in stark contrast with the scalings found by AB17, where 2D simulations

followed a Ma ∝ Ra1/4 power law and 3D simulations had a constant Mach number with a fixed superadiabatic excess
(ϵ) which is comparable to H. Like AB17 we find stronger positive scalings in 2D than in 3D. It should also be noted
that AB17 used fixed temperature boundary conditions at both boundaries whereas we use mixed flux-temperature
boundary conditions.

Our Nusselt number scaling law of Nu ∝ Ra1/5 is comparable to the Nusselt number scalings of the boundary
driven fully compressble convection simulations of AB17 in their high-Ra 2D simulations, however their low-Ra 2D
simulations follow a 1/3 power law, and their 3D simulations follow a 2/7 power law. The 2/7 power law was also
observed with fully compressible boundary driven convection by [49] and a steeper scaling exponent of 0.38 was
observed by [50]. We can also compare our Nusselt number scaling to incompressible internally heated convection
studies. We find the same Nusselt number scaling as [30, 31], however their simulations used fixed temperature at the
upper and lower boundaries. Therefore, the uniform heating case of [40] is the more analogous incompressible study
for our setup. Note that [31, 40] report a scaling law based on a “diagnostic” Rayleigh number which is equivalent
to Ra/Nu. We have converted their results to an input Rayleigh number scaling to be consistent with our choice of

Ra and Nu. Kazemi et al. [40] found a Nu ∝ Ra1/4 scaling, which is close to our scaling law, but not identical. It
is striking that we find a similar Nusselt number scaling to [40], and a near identical scaling to [30, 31] despite the
different boundary conditions.

IV. CONCLUSIONS

In this work we simulated fully compressible, internally heated convection. We used 2D and 3D simulations and
we varied the heating, H, and Rayleigh number, Ra. We observed convection dominated by cold downflows. We
did not observe the formation of hot upflow plumes at the lower boundary. This agrees with our expectations as the
lower boundary is thermodynamically stable. The dynamics we observe appear similar to those produced by Käpylä
et al. [56], Cossette and Rast [57], where the downflows are buoyantly driven and the upflows are pressure driven and
heated as they rise.

We found that the Mach and Reynolds numbers could be independently controlled in 2D by using H and Rayleigh

number as input parameters. Varying Ra produces a Re ∝ Ra1/2 and a weak Ma scaling. Varying H produces a

Ma ∝ H1/2 scaling and a weak Re scaling. In 3D we find a weaker scaling for Reynolds number of Re ∼ Ra1/3, and

a negative Ra scaling for Mach number of Ma ∼ Ra−1/10.
We found that the entropy jump in the upper boundary layer determines the average Mach number of the flow, and

thus the magnitude of the kinetic energy power spectrum. While the change in entropy across the boundary layer
scales similarly in 2D and 3D simulations, the impact of the boundary layer on the Mach number differs, with 2D
simulations having an additional effect tied to the Rayleigh number. This likely reflects flywheel modes since these
make up the large scale motions of our 2D simulations.

More robust mechanisms for controlling convective driving, such as an internal cooling layer which does not vary
in size between experiments, could improve our ability to separate the resultant Re and Ma of the flows in 3D, and
thus the behavior of power spectra. Internal heating and cooling layers have been used to reduce the effect of the
boundaries on heat transport in simulations [38, 40] and experiments [35, 36] of Boussinesq convection. Since we find
consistent heat transport scaling with the analogous internally heated Boussinesq setup of Goluskin & Spiegel [30],
we expect that the use of a cooling layer may have similar effects in the fully compressible regime. Critically, however,
the relationship between a cooling layer width and heating magnitude may differ. Therefore further study on the
shape of a non-uniform heating function is needed.

We additionally find heat transport scaling laws which are consistent with internally heated Boussinesq convection
[30, 31, 40]. This suggests that certain properties of incompressible flows also hold for stratified flows with low
Mach number and that studies of incompressible flows [e.g., 30, 32, 36, 40] are useful for understanding astrophysical
convection. However, this similarity may be limited to the low to intermediate Mach number regime which we studied
in this work (Ma ≤ 0.2).

We also found that velocity power spectra of 2D simulations were invariant at low wavenumber while turbulence
(Re) increased when the Mach number was held constant. This behavior may be useful for studying large scale flows
since their properties do not change significantly as Ra increases, thus allowing us to study them with low resolution,
low Ra simulations. However, with 3D simulations, the power at low wavenumber decreases as Ra increases. We may
be able to achieve consistent low wavenumber behavior in 3D by using a non-uniform heat source with heating and
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cooling layers, as the properties of the flow would not be set by a thermal diffusion dominated upper boundary.
Stars and gas giant planets do not have boundaries which act like hard walls, so the no-slip boundaries we used

are likely a poor model for astrophysical flows and stress-free boundary conditions are likely more appropriate. We
choose no-slip boundary conditions to prevent the onset of parasitic mean shear flows in 2D simulations. Mean shear
flows reduce thermal transport by convection and suppress convective flows with predator-prey like dynamics [58, 59].
Wider aspect ratios have been shown to suppress shear flows in 2D simulations with stress-free boundaries Wang et al.
[60], however this approach requires higher resolutions and longer convergence times. Shearing states typically do
not emerge in 3D simulations, so future work relying exclusively on 3D simulations could utilize stress-free boundary
conditions without this concern.

In this work we studied flows at Mach numbers between 10−2 and 0.2. We find that the behavior of the Reynolds
number and Nusselt number in our highest Mach number simulations deviated from the behavior at lower Mach
number. Scaling laws for high Mach number flows could be inconsistent with the heat transport scaling from internally
heated Boussinesq convection, and future studies should investigate this regime of flow. Future work should also study
how internal heating interacts with other complications such as rotation [61, 62] and chemical mixing [3].
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Appendix A: Linear Stability Onset Analysis

To determine the critical Rayleigh number Racrit as a function of H, we require an atmosphere in thermal and hy-
drostatic equilibrium. Our background reference state (T0, ρ0) is an adiabatic atmosphere, which satisfies hydrostatic
equilibrium but is not in thermal equilibrium because of the internal heating. We solve for a stratification which
satisfies thermal and hydrostatic equilibrium using a boundary value problem with an integral constraint to enforce
mass conservation. We solve for

−∂2Teq

∂z2
= Q (A1)

∂ρeq
∂z

= −ρeq
Teq

∂Teq

∂z
− gρeq

RTeq
(A2)

where subscript eq denotes the equilibrium state. Our integral constraint is∫ Lz

0

ρeq =

∫ Lz

0

ρ0 (A3)

where ρ0 is our adiabatic reference state. The boundary conditions are

∂Teq

∂z
(z = 0) =

∂T0

∂z
(z = 0) = ∇Tad · ẑ (A4)

Teq(z = Lz) = T0(z = Lz) = (∇Tad · ẑ)Lz (A5)

We show an example solution of this boundary value problem in the left panel of Fig 10.
We linearize Eqns. 1-3 around this equilibrium state and perform a linear stability analysis using eigentools [43] to

determine the onset of convection, taking solutions of form eiωt and searching for where the growth rate, ω reaches
zero. We solve the boundary value problem and subsequent linear stability analysis for all values of H. For each value
of H, eigentools calculates growth rates over a specified grid in Rayleigh number and horizontal wavenumber and then
uses interpolation, root finding, and minimization algorithms to determine the minimum Rayleigh number where the
growth rate is zero; see the middle panel of Fig 10. We show the resulting values of Racrit in rhe right panel of Fig
10. We find that for H ≲ 1, Racrit ≈ 50, then grows as H increases.
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FIG. 10. Left panel: Example of a thermal equilibrium solution with H = 10.667 to be used as input to the linear stability
analysis. We plot temperature, T (green) and density, ρ (orange), against height, z. Middle panel: Example of growth rates
with H = 10.667 plotted against horizontal wavenumber on the x-axis and Rayleigh number on the y-axis. Black dots indicate
the interpolated value of Ra where the growth rate is zero for the given wavenumber. Right panel: Values of Racrit plotted
against H. We find that Racrit is roughly constant below H ∼ 1, and increases for H ≳ 1.

Appendix B: Fast Initial Conditions

To speed up the evolution to a thermally equilibrated, nonlinear convective state, we initialize our simulation with
an approximation of the time averaged steady state (see Fig. 4). We refer to this method as “Fast-IC”. Convection
efficiently mixes the temperature gradient to the adiabatic value in the interior. To satisfy thermal equilibrium and
our boundary conditions, the time-averaged superadiabatic temperature gradient at the upper boundary must be −H.
We impose that the half-width of the thermal boundary layer is set by the Nusselt number as

δ =
Lz

2Nu
. (B1)

This scaling is chosen to approximate the width of a thermally equilibriated IVP solution. Our approximation of the
steady state solution is

∂Teq

∂z
= ∇Tad · ẑ + −H

2

[
1 + erf

(
(z − (Lz − δ))

(δ/2)

)]
(B2)

where erf is the error function. To ensure that the new initial conditions are in hydrostatic equilibrium and have the
same mass as our original initial conditions, we solve a nonlinear boundary value problem to find ln ρ with equation
A2 and integral constraint A3 while taking eqn. B2 as ∂T/∂z. Teq is obtained by integrating B2 subject to boundary
condition A5.

After running our lower resolution 2D simulations with the adiabatic polytrope for initial conditions we fit a power
law Nu = A(Ra/Racrit)

α for each value of H with A and α listed in Table I. We use this powerlaw to find the value
of Nu in Eqn. B1 and then use the nonlinear boundary value problem to produce initial conditions for high Rayleigh
number 2D runs and most 3D runs. We show an example of the specified shape for T and the resulting solution for
ρ in Fig 1.

This method offers considerable reduction in CPU time required for running turbulent simulations in 2D. In Fig. 11
we show a comparison of the time-evolution of volume-averaged measures between two simulations with Ra/Racrit =
2× 105 and H = 0.75, one using “Fast-IC”, the other using adiabatic initial conditions. We plot (left) the Reynolds
number, a measure of the dynamics, and (right) ∆s, a measure of the structure. We calculate the time required for
the Reynolds number to equilibrate to within 3% of its final value. The dynamics convergence times are tdfast

= 320
for “Fast-IC” and tdad

= 3800 for adiabatic initial conditions. We calculate a 3% convergence time for ∆s as well.
We find that with “Fast-IC” the ∆s begins within 3% of the final value, and the structure convergence time for the
adiabatic initial conditions is tsad = 4500. By predicting the final structure with “Fast-IC”, ∆s starts near its final
value, whereas the adiabatic initial conditions slowly approach the converged state. “Fast-IC” starts with u = 0, so
the dynamics still take time to converge, however the time required is significantly shorter than with the adiabatic
initial conditions.

In the left column of Fig. 12 we show the dynamics at tdfast
for both “Fast-IC” and adiabatic initial conditions.

With the adiabatic initial conditions in panel a the simulation has reached convective onset with cold plumes forming
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H A α Racrit

0.029 0.7677 0.1943 51.58

0.167 0.7920 0.1927 51.27

0.400 0.8281 0.1902 51.16

0.750 0.8571 0.1896 51.73

1.333 0.9252 0.1868 53.97

2.500 1.0270 0.1848 61.34

6.000 1.2251 0.1862 93.33

10.667 1.5539 0.1797 146.59

16.500 1.8926 0.1754 223.11

TABLE I. Parameters of the powerlaw fits for Nu = A(Ra/Racrit)
α
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FIG. 11. An example of time traces of Reynolds number (left panel) and ∆s (right panel) for simulations with Ra = 2×105Racrit
and H = 0.75 with “Fast-IC” (orange) and adiabatic initial conditions(green). Grey horizontal lines show the time- and volume-
averaged values reported in Appendix C. Arrows show the time where a rolling average over 500 data points has converged to
within 3% of the the accepted value.

at the top of the domain. The thermal boundary layer is shallow so the entropy perturbation of the plumes is small,
therefore they loose their cool signature due to the heating before they transit the domain and halt partway down.
As the thermal structure evolves the plumes reach deeper into the domain, eventually reaching the bottom. With
“Fast-IC” in panel c we skip this slow evolution and convective plumes immediately cross the entire domain after
convective onset and the dynamics quickly reach a converged state. We show probablity density functions (PDFs)
of vertical velocity, w, for both cases in panel e. The two PDFs are distinct; the adiabatic-IC case has a narrower
distribution and smaller average velocities, where the PDF of the Fast-IC case has a wider distribution which is close
to the final velocity distribution seen in panel f. In the right column we show dynamics for the adiabatic-IC case (panel
b) and the fast-IC case (panel d) as well as PDFs for both cases (panel f) at t = 6000. At this time the dynamics and
structure have converged for both initial condition choices. The dynamics not only look similar between panels b and
d, but the distribution of velocities have converged in panel f. The “Fast-IC” case reached a final distribution with a
mean of -0.013, standard deviation of 0.048, skewness of -4.24, and kurtosis of 21.74. The adiabatic initial conditions
reached a final state with a mean of -0.012, standard deviation of 0.048, skewness of -4.10, and kurtosis of 20.37.
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FIG. 12. (Panels a and c) An example of entropy fluctuations at t = tdfast for simulations with Ra = 2×105Racrit and H = 0.75
with adiabatic initial conditions (panel a) and “Fast-IC” (panel c). The run with adiabatic initial conditions has reached
convective onset, however cold downflow plumes stall out part way through the atmosphere, becoming more buoyant (redder)
than the nearby fluid. As time progresses convective downflows reach further into the atmosphere. In the run with “Fast-IC”
the downflow plumes cross the domain immediatly after convective onset and the dynamics quickly reach a converged state.
The colorbar is calculated from the adiabatic initial conditions case in the same manner as in Fig. 2 and is used in all dynamics
panels. In panel e we show probability density functions (PDFs) for entropy fluctuations averaged over 12 heating timescales
for both adiabatic-IC and fast-IC simulations at t = tdfast . The adiabatic-IC run has not converged at this time as evidenced
by the discrepancy betweeen the PDFs. In the right column (panels b, d, and f) we show dynamics and PDFs at t = 6000,
which is after dynamics and structure have converged for both choices of initial conditions. The dynamics of the adiabatic-IC
simulation (Panel b) are comparable to the dynamics of the Fast-IC run (Panel d). In panel f we show the PDFs for both runs
where the distributions have converged, indicating that the dynamics have reached a statistically similar final state.

Appendix C: Table of Simulations

In table III we display all simulations used in this study where we show control parameters Ra/Racrit and H,
horizontal resolution nhoriz and vertical resolution nz, dimensionality, heating timescale theat, simulation run time
tsim, averaging window tavg, and time and volume averaged Reynolds number, Mach number, Nusslet Number, and
change in entropy across the domain. All timescales are expressed in nondimensionalized time units.
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Ra/Racrit H nhoriz nz 2D/3D theat tsim tavg Re Ma Nu ∆s
1.94× 102 0.029 128 64 2D 13.465 120791 13465 2.08× 101 0.019 2.17× 100 -0.043
1.95× 102 0.167 128 64 2D 5.657 51409 5656 2.08× 101 0.043 2.22× 100 -0.235
1.95× 102 0.400 128 64 2D 3.651 33683 3651 2.07× 101 0.065 2.29× 100 -0.531
1.93× 102 0.750 128 64 2D 2.667 24755 2666 2.01× 101 0.083 2.35× 100 -0.929
1.85× 102 1.333 128 64 2D 2.000 19339 2000 1.94× 101 0.100 2.46× 100 -1.481
1.96× 102 2.500 128 64 2D 1.506 14235 1506 2.05× 101 0.120 2.71× 100 -2.291
1.93× 102 6.000 128 64 2D 1.040 10680 1040 2.20× 101 0.138 3.24× 100 -3.780
1.91× 102 10.667 128 64 2D 0.839 8444 839 3.39× 101 0.143 4.18× 100 -4.631
1.94× 103 0.029 256 128 2D 19.764 130839 19763 5.87× 101 0.015 3.25× 100 -0.031
1.95× 103 0.167 256 128 2D 8.303 51280 8302 5.95× 101 0.036 3.33× 100 -0.169
1.95× 103 0.400 256 128 2D 5.359 33869 5359 5.88× 101 0.055 3.43× 100 -0.385
1.93× 103 0.750 256 128 2D 3.914 24627 3914 5.95× 101 0.075 3.55× 100 -0.673
1.85× 103 1.333 256 128 2D 2.935 18330 2935 5.84× 101 0.094 3.75× 100 -1.081
1.96× 103 2.500 256 128 2D 2.210 13516 2210 6.29× 101 0.120 4.16× 100 -1.696
1.93× 103 6.000 256 128 2D 1.526 10251 1526 6.93× 101 0.146 5.04× 100 -2.879
1.91× 103 10.667 256 128 2D 1.232 2464 1232 8.05× 101 0.164 6.00× 100 -3.783
1.93× 103 16.500 256 128 2D 1.064 7618 1064 9.73× 101 0.177 7.12× 100 -4.453
1.94× 104 0.029 256 128 2D 29.010 143950 29008 1.88× 102 0.014 5.25× 100 -0.020
1.95× 104 0.167 256 128 2D 12.187 59992 12187 1.87× 102 0.034 5.33× 100 -0.112
1.95× 104 0.400 256 128 2D 7.866 38995 7866 1.87× 102 0.051 5.43× 100 -0.260
1.93× 104 0.750 256 128 2D 5.745 29062 5744 1.87× 102 0.069 5.58× 100 -0.463
1.85× 104 1.333 256 128 2D 4.309 22096 4309 1.87× 102 0.090 5.80× 100 -0.761
1.96× 104 2.500 256 128 2D 3.244 16738 3244 2.00× 102 0.115 6.43× 100 -1.219
1.93× 104 6.000 256 128 2D 2.240 11800 2240 2.36× 102 0.160 7.78× 100 -2.144
1.91× 104 10.667 256 128 2D 1.809 9610 1809 2.80× 102 0.189 9.26× 100 -2.887
1.93× 104 16.500 256 128 2D 1.562 8306 1562 3.28× 102 0.210 1.07× 101 -3.509
1.94× 105 0.029 512 256 2D 42.581 68091 15773 5.85× 102 0.014 8.23× 100 -0.013
1.95× 105 0.167 512 256 2D 17.888 29625 6722 5.80× 102 0.032 8.33× 100 -0.075
1.95× 105 0.400 512 256 2D 11.546 19045 4323 5.89× 102 0.049 8.46× 100 -0.176
1.93× 105 0.750 512 256 2D 8.432 13706 3165 5.82× 102 0.066 8.66× 100 -0.317
1.85× 105 1.333 512 256 2D 6.324 10594 2433 5.93× 102 0.089 8.93× 100 -0.532
1.96× 105 2.500 512 256 2D 4.761 7847 1856 6.36× 102 0.116 9.70× 100 -0.877
1.93× 105 6.000 512 256 2D 3.288 5614 1307 7.61× 102 0.167 1.17× 101 -1.596
1.91× 105 10.667 512 256 2D 2.655 4103 1078 9.02× 102 0.203 1.37× 101 -2.211
1.93× 105 16.500 512 256 2D 2.293 3960 929 1.06× 103 0.229 1.60× 101 -2.721
1.94× 106 0.029 1024 512 2D 62.500 19419 3870 1.72× 103 0.012 1.33× 101 -0.009
1.95× 106 0.167 1024 512 2D 26.255 8315 1633 1.71× 103 0.029 1.29× 101 -0.048
1.95× 106 0.400 1024 512 2D 16.948 5513 1075 1.73× 103 0.045 1.32× 101 -0.114
1.93× 106 0.750 1024 512 2D 12.377 4030 798 1.74× 103 0.061 1.37× 101 -0.208
1.85× 106 1.333 1024 512 2D 9.283 3129 604 1.73× 103 0.081 1.39× 101 -0.356
1.96× 106 2.500 1024 512 2D 6.988 2361 460 1.91× 103 0.110 1.55× 101 -0.600
1.93× 106 6.000 1024 512 2D 4.826 1669 329 2.20× 103 0.156 1.81× 101 -1.140
1.91× 106 10.667 1024 512 2D 3.896 1364 261 2.63× 103 0.194 2.04× 101 -1.607
1.93× 106 16.500 1024 512 2D 3.365 1167 230 3.12× 103 0.222 2.51× 101 -2.016
1.94× 107 0.029 2048 1024 2D 91.737 10311 7033 4.81× 103 0.011 2.29× 101 -0.006
1.95× 107 0.167 2048 1024 2D 38.537 7507 2888 4.83× 103 0.026 2.22× 101 -0.031
1.95× 107 0.400 2048 1024 2D 24.876 4682 1895 4.90× 103 0.040 2.56× 101 -0.075
1.93× 107 0.750 2048 1024 2D 18.167 2443 1395 4.89× 103 0.055 2.21× 101 -0.138
1.85× 107 1.333 2048 1024 2D 13.625 1905 1072 4.81× 103 0.073 1.96× 101 -0.237
1.96× 107 2.500 2048 1024 2D 10.257 1223 795 5.04× 103 0.094 2.52× 101 -0.405
1.93× 107 6.000 2048 1024 2D 7.084 1527 568 5.86× 103 0.133 2.47× 101 -0.771
1.91× 107 10.667 2048 1024 2D 5.719 1135 435 7.06× 103 0.170 4.57× 101 -1.116
1.93× 107 16.500 2048 1024 2D 4.939 675 358 8.36× 103 0.204 5.23× 101 -1.436
1.93× 102 0.750 128 64 3D 2.667 2667 1332 1.94× 101 0.081 2.72× 100 -0.835
1.93× 103 0.750 256 128 3D 3.914 3538 1767 4.63× 101 0.064 4.18× 100 -0.596
1.94× 104 0.029 256 128 3D 29.010 5541 2756 1.06× 102 0.010 6.30× 100 -0.018
1.93× 104 0.750 256 128 3D 5.745 1172 583 1.07× 102 0.049 6.67× 100 -0.416
1.91× 104 10.667 256 128 3D 1.809 904 112 1.62× 102 0.130 1.11× 101 -2.559
1.93× 105 0.750 512 256 3D 8.432 2340 219 2.59× 102 0.040 1.05× 101 -0.269

TABLE III. Table of all simulations used in this paper.
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